Jumat, 11 Oktober 2013

PEMBUKTIAN LOGIKA



LOGIKA & PEMBUKTIAN MATEMATIKA

Pendahuluan
Secara etimologis, logika   logos (yunani):
kata, ucapan,fikiran secara utuh, ilmu
pengetahuan.
Mengapa mempelajari logika?
Logika penalaran: penarikan kesimpulan
dalam sebah argumen.

Pengertian
Pernyataan (preposisi)
Kalimat
deklaratif yang bernilai benar atau salah, tapi
tidak keduanya.
Pernyataan biasanya dinotasikan dengan p.
1.Manila adalah ibukota negara Thailand.
2.5 x 12 = 90
3.Jawablah pertanyaan di bawah ini!
4.Hari ini adalah jumat.
5. 3x –4 = 5
6. Jam berapa sekarang?
7. X + y = z.
8. Semua kelelawar adalah hewan menyusui.

Operasi uner
Nilai kebenaran negasi sebuah pernyataan
adalah kebalikan dari nilai kebenaran
yang dimiliki oleh pernyataannya.
Contoh:
1.4 + 4 = 16.
2.x
2>0, x ЄR.


Pembuktian melalui kontradiksi
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Pembuktian melalui kontradiksi (bahasa Latin: reductio ad absurdum, 'reduksi ke yang absurd', bahasa Inggris: proof by contradiction, 'bukti oleh kontradiksi'), adalah argumen logika yang dimulai dengan suatu asumsi, lalu dari asumsi tersebut diturunkan suatu hasil yang absurd, tidak masuk akal, atau kontradiktif, sehingga dapat diambil kesimpulan bahwa asumsi tadi adalah salah (dan ingkarannya benar). Dalam disiplin matematika dan logika, pembuktian melalui kontradiksi merujuk secara khusus kepada argumen dimana sebuah kontradiksi dihasilkan dari suatu asumsi (sehingga membuktikan asumsi tadi salah)
Argumen ini menggunakan hukum non-kontradiksi - yaitu suatu pernyataan tidak mungkin benar dan salah sekaligus. Frase Latin reductio ad absurdum berasal dari frasi Yunani ες τοπον παγωγή yang berarti sama, digunakan oleh filsuf Aristoteles.
Penjelasan
Dalam disiplin logika formal, pembuktian melalui kontradiksi digunakan ketika sebuah kontradiksi (formal) dapat dihasilkan dari suatu premis, sehingga dapat disimpulkan bahwa premis tersebut salah. Jika kontradiksi tersebut dihasilkan dari beberapa (lebih dari satu) premis, kesimpulannya adalah satu atau lebih dari premis tersebut adalah salah. Dalam kasus terakhir, metode lain harus digunakan untuk membuktikan premis mana saja yang salah.
Suatu pernyataan matematis kadang-kadang dibuktikan dengan cara pembuktian melalui kontradiksi, dengan cara mengasumsikan ingkaran (negasi) dari pernyataan yang hendak dibuktikan, lalu dari asumsi ini diturunkan sebuah kontradiksi. Ketika kontradiksi dapat dicapai secara logika, asumsi tadi telah terbukti salah, sehingga pernyataan tersebut benar.
Pembuktian melalui kontradiksi atau reductio ad absurdum bukanlah sebuah argumen yang salah, sebaliknya jika dilakukan dengan benar merupakan argumen yang sah. Jika pembuktian melalui kontradiksi menghasilkan kesalahan, kesalahan tersebut terletak pada kesalahan pada proses penurunan kontradiksi, bukan pada cara pembuktiannya.
Contoh
Contoh klasik pembuktian melalui kontradiksi pada zaman Yunani Kuno adalah pembuktian bahwa akar kuadrat dari dua merupakan bilangan irasional (tidak bisa dinyatakan sebagai perbandingan bilangan bulat). Pernyataan ini dapat dibuktikan dengan cara mengasumsikan sebaliknya bahwa √2 adalah bilangan rasional, sehingga bisa dinyatakan sebagai perbandingan bilangan bulat a/b dalam pecahan yang paling sederhana. Tapi jika a/b = √2, maka a2 = 2b2. Ini berarti a2 adalah bilangan genap. Karena kuadrat dari bilangan ganjil tidak mungkin genap, maka a adalah bilangan genap. Karena a/b adalah pecahan paling sederhana b pastilah ganjil (sebab pecahan genap/genap masih bisa disederhanakan). Namun karena a adalah bilangan genap (anggap 2r artinya a2 (4r2) adalah bilangan kelipatan 4, dan b2 adalah bilangan kelipatan 2 (genap). Hal ini berarti b juga merupakan bilangan genap, dan ini merupakan kontradiksi terhadap kesimpulan sebelumnya bahwa b pastilah ganjil. Karena asumsi awal bahwa √2 adalah rasional mengakibatkan terjadinya kontradiksi, asumsi tersebut pastilah salah, dan ingkarannya (bahwa √2 adalah irasional) merupakan pernyataan yang benar.




Tidak ada komentar:

Posting Komentar